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Although the addition of singlet carbenes to olefins has 
been under active investigation for about 20 years,1 very few 
1,4-additions have been reported.2-'3 Most of them turned out 
to be two-step processes. Either the singlet carbene underwent 
relaxation to the triplet state, or a cyclopropane adduct was 
initially formed, and subsequently underwent a vinylcyclo-
propane rearrangement. Only in one case, the homo 1,4-ad­
dition of difluorocarbenes to norbornadiene, has a one-step 
process been established.14 

On the basis of an orbital correlation diagram the reaction 
is symmetry allowed (Figure 1). Transfer of electron density 
can occur from (a) the HOMO itj to the empty p orbital of the 
methylene (type I interaction) and (b) the a orbital (of the 
methylene) into the LUMO wj* (type II interaction). In this 
respect the carbene can act as an electrophilic (j2 ~^ p) and 
nucleophilic (a •— ir^*) species toward the diene.15 

Results and Discussion 
In order to deepen the understanding of the mechanism of 

the concerted 1,4-addition we have performed a theoretical 
study on this reaction employing the semiempirical MINDO/3 
method.18 All calculated geometries were optimized for a single 
Slater determinant wave function with the gradient proce­
dure.19 

As a model reaction the approach of methylene in its energy 
lowest a2 state16a-20 to c/s-butadiene was investigated. 

The selection of the reaction coordinate is shown in Figure 
2. For the computation of the pathway directing the 1,4 adduct, 
Cs symmetry had to be imposed (/3 = 90°). All other param­
eters were optimized. 

The calculated energy path as a function of the reaction 
coordinates R is plotted in Figure 3. A sizable energy barrier 
of 28 kcal/mol is predicted for the reaction path. This is in 
contrast to the findings on the 1,2-addition of methylene to 
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ethylene, where no activation energy is required for the pro­
cess.16 

In view of the fact that the 1,4-addition of singlet methylene 
to m-butadiene has been classified as a concerted process 
(Figure 1 )21 the magnitude of the energy barrier seems to be 
unexpectedly high22 (compared with the corresponding sym­
metry-forbidden 1,2-addition). 

A first analysis which helps to explain this anomaly is pro­
vided by an inspection of the energy hypersurface. In Figure 
4 the reaction path obtained from the complete energy opti­
mization is summarized in a series of snapshots, the methylene 
approaching the butadiene unit. 

With decreasing values of R the methylene tends to avoid 
the a approach (R < 2.7 A). When R is further reduced a 
sudden change in the geometry of the butadiene unit takes 
place. The methylene groups at Ci and C4 in butadiene start 
to rotate (disrotatory). At this point of the reaction path the 
overlap of the T MOS of the diene with the orbitals of the 
methylene is maximized. Hence the concerted 1,4-addition 
occurs in two crucial different stages. 

The effect which counterparts the a approach with maxi­
mum overlap involves repulsion between the electrons in the 
a orbital of the methylene and the subfrontier23 ir\ MO of the 
butadiene (Figure I). 

"' 4 NiOE, N < N 

Since these orbitals possess like symmetry they will interact. 
The a orbital will be raised in energy more as the ir\ MO is 
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Figure 1. Orbital correlation diagram for the cr approach16" of methylene 
to ris-butadiene. The symmetry designations are with respect to a sym­
metry plane P. 

Figure 2. Selection of parameters for the description of the reaction 
coordinate. C1 symmetry is imposed and butadiene held in a cis confor­
mation. The dummy atom d bisects the line between the atoms Ci and 
C4. 

lowered. As a net effect electronic destabilization results. In 
the case studied here this overlap repulsion24 controls the re­
action path. 

Our view of the mechanism of the concerted 1,4-addition 
is still not complete. From theoretical studies25 on the addition 
reaction :CH2 + H2 it is known that the trajectories of the 
methylene do not necessarily follow the reaction path of lowest 
electronic energy. Although a study of the dynamics of the 
1,4-addition seems rather laborious, since it would require the 
knowledge of the potential surface in 37V dimensions26 (TV = 
number of degrees of freedom), a good deal of information is 
provided in a section through the electronic hypersurface 
presented in Figure 5. 

The electronic energy of the system methylene plus cis-
butadiene is plotted as a function of the two variables a and 
R. A value of a = 90 ° corresponds to the "perfect" a ap­
proach, i.e., a path perpendicular to the plane of the diene 
system (see Figure 2). 

The contour map (Figure 5) corroborates the assertion of 
Figure 4. In the a approach the repulsion between the electrons 
in the <r orbital and ir\ of the diene is strongly dominant at 
distances of R ~ 1.5 A. 
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Figure 3. Plot of the calculated heats of formation (IHu kcal/mol) vs. the 
reaction coordinate R (in angstrom units) for the energy optimized ap­
proach of methylene to cw-butadiene. For the choice of the reaction 
coordinate see Figure 2. 
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Figure 4. Snapshots for the energy-optimized approach of methylene to 
m-butadiene and leading to the 1,4 adduct (cyclopentene). The full drawn 
lirtes correspond to a bisector of the HCH angle of the methylene. The 
corresponding numbers belong to the different values of R (in angstrom 
units). 

The saddle point of the contour map presented in Figure 5 
lies at R = 1.75 A and a = 125°. Hence, the energy path 
plotted in Figure 4 does not pass through this point. In other 
words, trajectories can be constructed which are lower in en­
ergy than the one presented in Figure 3. On this basis the 
minimal energy27 required for the concerted 1,4-addition of 
methylene to m-butadiene amounts to 23 kcal/mol. 

Conclusion and Consequences 
We have presented a section through the electronic hyper­

surface for the reaction of methylene with cis-butadiene 
leading to the 1,4 adduct (cyclopentene). All experimental 
investigations to prove the concerted nature of this reaction 
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Figure 5. Contour map of the potential energy hypersurface for the 1,4-
addition of methylene to ris-butadiene as a function of the two parameters 
R (in angstrom units) and a (in degrees). All points on the hypersurface 
are totally optimized with respect to Cs symmetry. The numbers corre­
spond to the heats of formation in kcal/mol. The saddle point (marked 
with a cross) corresponds to R = 1.75 A, a = 125°. 

have been unsuccessful so far. We have given an explanation 
for this fact: The favorable orbital interaction a -* 7T3* is su­
perseded by repulsion between the orbitals a and T\. 

Is it possible to devise a strategy in such a way that the re­
action path directing the 1,4 adduct is favored over the com­
peting 1,2 adduct? According to the interaction diagram 
presented in Figure 1 this goal may be achieved by (a) reducing 
the energy gap between the a and T3* orbitals and (b) in­
creasing the energy difference between the a and T1 orbitals. 
This would require the introduction of electron-withdrawing 
substituents. Further investigations on this problem are in 
progress. 
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